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Abstract: Acylnitroso intermediates are usually known as super reactive species, always prepared in situ and
can be readily trapped via hetero-Diels-Alder reactions with dienes or with olefins via ene reactions, which
open a magnificent access to produce a variety of complicated and very demanding organic molecules. Both of
these reactions of acylnitroso species have been proved as the key synthetic tool in the total synthesis of
natural products. The synthetic methods used to prepare these intermediates as well as their recent synthetic
applications to the total synthesis of natural products are briefly described in this minireview.
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I. INTRODUCTION

Acylnitroso intermediates are of a great interest and
attraction in the area of organic synthesis during the last
decades. Since, highly functionalized molecules such as
pyrrolidines, amino alcohols and aza sugars can be readily
achieved from nitroso compounds by hetero-Diels-Alder
reactions. In the utility of these intermediates, the most
achievement came from the synthesis of 1,4-amino alcohols,
which stands as building blocks for the total synthesis of

natural products. Thus, acylnitroso intermediates show a
wide range of applications in organic synthesis to achieve
many multi-functionalized molecules such as natural
products [1].

W. G. Kirby was the pioneering contributor to
acylnitroso chemistry as he reported a review of this subject
in 1977 [2]. In 1982, S. M. Weinreb and R. R. Staib also
discussed this topic, emphasizing the utilization of
acylnitroso compounds as hetero-dienophiles in Diels-Alder
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cycloadditions [3]. An excellent review has appeared in 1998
from the contribution of P. F. Vogt and M. J. Miller on the
development and application of amino-acid derived chiral
acylnitroso hetero-Diels-Alder reactions [4].

Although, recent studies are focused to enhance the
utility of nitroso intermediates, the synthetic methods for
the generation of these intermediates are still limited. In
general, acylnitroso species are obtained from the oxidation
of hydroxylamine derivatives, using organic and inorganic

oxidants. Currently, hydrogen peroxide is successfully used
as an oxidant for the generation of acylnitroso intermediates
via its hetero-Diels-Alder reactions with transition metal
complexes as catalysts [5].

II. SYNTHESIS OF ACYLNITROSO INTERMEDIA-
TES

Since acylnitroso species are unstable and very reactive,
they are traditionally prepared in situ as transient
intermediates by oxidation of hydroxamic acids [2]. They
can also be generated by oxidation of nitrile oxides [6] and
by cyclo-reversion from the corresponding cycloadducts
(Scheme 1) [7]. Acylnitroso species could not be isolated
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and W. G. Kirby pointed out that the only evidence for their
existence were products 5–7 resulting from nucleophilic
attack at the acylnitroso carbonyl 4 (Scheme 2) [2]. The first
direct spectroscopic evidence for acylnitroso species came
from the work of H. Schwarz et al. as they generated these
species by retro-Diels-Alder reactions of cycloadducts and
were directly detected by neutralization-re-ionization mass
spectrometry [8]. Very recently, these species have directly
been detected in solution by time-resolved IR spectroscopy
[9].

A. Synthesis of Hydroxamic Acids

Hydroxamic acids have been known for over a century
and their derivatives possess a wide spectrum of biological
activities [10]. Therefore, several methods have been
developed for the preparation of hydroxamic acids. They

have generally been synthesized in solution from nitro
compounds or through the reaction of O /N -protected
hydroxylamines with activated carboxylic acids [11]. The
most important method for the preparation of hydroxamic
acids is the acylation of hydroxylamine as shown in Scheme
(3) [12].

A mild and simple one-step approach for the preparation
of hydroxamic acids from carboxylic acid derivatives as
shown in Scheme (4) has been reported by G. R. Reddy
et al. [13].

A new method for the preparation of para-substituted
benzohydroxamic acids was described by M. M. Salunkhe
et al. as shown in Scheme (5) [14].

Recently, hydroxamic acids were obtained from the
reaction of N-acyloxazolidinones with hydroxylamines using
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samarium triflate as a Lewis acid.[15] Solid-phase synthesis
has also become an important tool, and there have been
several reports describing synthesis of hydroxamic acid
derivatives [16].

Very recently, G. Giacomelli et al. have reported a
simple one-flask method for the synthesis of hydroxamic
acids as shown in Scheme (6) [17].
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B. Oxidation of Hydroxamic Acids

In general, the acylnitroso intermediates are obtained in
situ from the oxidation of hydroxyl amine derivatives, such
as: periodate salts [18], Dess-Martin periodinane [19],
hypochlorite [20], and Swern-Moffat method (Scheme 7)
[21].

These methods have some drawback in the sense that
always there was formation of inorganic or organic
undesirable side products. Recently, A. Whiting et al.
reported a new ruthenium(IV)-based method for the in situ
generation of an acyl nitroso dienophile as shown in Scheme
(8) [22].

A plausible mechanism of this oxidation process was out
lined as in Scheme (9).
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In the choice of oxidant, hydrogen peroxide attracted
considerable attention and it was generally used in the
presence of metal-complex catalysts. The use of it as an
oxygen donor is particularly attractive, both for its high
oxygen contents and the formation of water as the side
product [23]. Among the tested metallic hydrogen peroxide
oxidation systems. Ru(pybox-dh)(pydic), [Ir(coe)2Cl]2,
[Ir(cod)Cl]2 and CuI were found effective and can be
successfully employed to generate acylnitroso intermediates
from hydroxamic acids (Scheme 10) [5].

III. SYNTHETIC APPLICATION

The generation of 1,2-oxazine 23 by hetero-Diels-Alder
reaction is a transformation, which discloses a resourceful
array of highly functionalized acyclic and cyclic structures.
Thus, pyrrolidine derivatives 24, amino alcohols 25 and aza-
sugars 26 are easily available from these cycloadducts as
sketched in Scheme (11).

A. Hetero-Diels-Alder Reaction

The potential of nitroso carbonyls as very reactive
dienophiles in hetero-Diels-Alder (HDA) cycloadditions has
been explored in great detail since last three decades. The
HDA cycloaddition often represents a pivotal reaction step in
total syntheses of natural products, because of the high
stereo- and regio-selective outcome and the convenient
introduction of multifunctionality by reductive cleavage of
the N-O bond of the adduct.

The in situ generated acylnitroso compounds react with
1,3-dienes to form derivatives of 1,2-oxazine, which on
cleavage of the nitrogen-oxygen bond afford 4-
aminoalcohols. Reactions of this kind have been used to
prepare a series of polyhydroxy-piperidines and
polyhydroxyamino-cyclohexanes. The synthesis of tetra-
acetylated aminoallose 33 starting from dimethylacetal of
hexa-2,4-dienal 28 and acylnitroso species(29) is an example
of utilizing intermolecular hetero Diels-Alder reaction
(Scheme 12) [24].
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K. J. Shea et al. have reported the synthesis of
bridgehead oxazinolactums 39 by intramolecular Diels-Alder
cycloaddition utilizing N -acylnitroso dienophiles and
pointed out that after the appropriate manipulations, these
could be elaborated to medium-ring amines or lactams
(Scheme 13) [25].

In another report K. J. Shea and coworkers have
employed the intramolecular N-acylnitroso Diels-Alder
reaction (IMDA) in steroselective synthesis of bridged
bicyclic oxazinolactams. Upon oxidation of hydroxamic acid
42, a 3-benzylated oxazinolactam 43 was synthesized with
complete diastereoselectivity and elaboration of cycloadduct

43 liberated a cis-3,7-disubstituted azocin-2-one 45 as shown
in Scheme (14) [26].

The regio and stereochemically controlled formation of
hydroxamic acid containing anti- or syn- 1,4-cycloalkenols
was reported by M. J. Miller et al. [27]. Treatment of
acylnitroso hetero-Diels-Alder cycloadducts 48 with iron(III)
or copper(II) in an alcohol solvent induces ring opening to
afford predominantly monocyclic anti-1,4-hydroxamic acids
49. However, treatment of cycloadducts 48 with copper(II) in
toluene reverses the stereoselectivity of the ring opening to
afford syn-1,4-hydroxamic acids 50. A plausible mechanism
involves an initial Lewis acid mediated opening of the
cycloadduct to give a tight ion pair was out lined as Scheme
(15).
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Compound 59 containing the 1,4-benzodiazepine core,
which make up an important class of privileged structures
with a broad spectrum of biological activities and therapeutic
uses can be synthesized in a single step from synthetically

versatile acylnitroso-derived hetero-Diels-Alder cycloaddition
(Scheme 16) [28]. The efficiency of this transformation was
found to be dependent on the NH pKa of the cycloadduct
sulfonamide.
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S. B. King et al. reported that the cycloadduct 60 of 1,3-
cyclopentadiene and acylnitroso compound underwent ring-
opening cross metathesis (ROCM) to give a mixture of four
cyclic hydroxylamine in nearly equal amounts in 57% yield
(Scheme 17) [29]. NMR experiments indicate that the four
compounds consist of the E and Z diastereomers of the two
regioisomers 62 and 63.

B. Ene Reaction

The acylnitroso compounds have been used relatively
little for the ene reaction due to their labile nature. In this
reaction although the enophile is unsymmetrical only one
mode of addition is observed, reaction always leading to the
formation of a C-N bond and generation of a N-OH
compound.

E. G. Keck et al. have described the use of acylnitroso
compounds of the general formula RCONO as enophiles in
the formation of carbon-nitrogen bonds. They have studied
both inter- and intramolecular ene reactions via thermal
transfer of nitrosocarbonylmethane from its Diels-Alder
adduct with 9,10-dimethyl anthracene [30].
Nitrosocarbonylmethane liberated in situ from its Diels-
Alder adduct 64 in the presence of phenylcyclohexene gave
the adduct 65 in 95% yield is an example of bimolecular ene
reaction (Scheme 1 8 ). The regiochemistry of the
intermolecular reaction is observed to be the result of kinetic

control, and the direction of addition is consistent with
attack by the olefin on electron-deficient nitrogen. Table I
shows two examples of intramolecular ene reactions.

Table 1. Intramolecular ene Reactions: All Acylnitroso
Compounds were Generated by Thermolysis of
their Diels-Alder Adducts with 9,10-
Dimethylanthracene

ene substrates yield(%) product yield(%)

N
O

O

74
N

O

OH

100

O

N
O

O

O

85

N

O

OH

O
O
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A general approach of the oxidation of hydroxamic acid
2a and its bimolecular ene reaction with olefin may be out
lined as Scheme (19).

Intramolecular ene reactions take place readily. Oxidation
of the hydroxamic acid 67  in the presence of 9,10-
dimethylanthracene afforded the Diels-Alder adduct of the
nitroso-ketone 68, which on thermal release in boiling
toluene gave the adduct 69 in quantitative yield. This was
converted into the amino 70 and thence into (±)-crinane 71
(Scheme 20) [31].

W. G. Kirby et al. and E. G. Keck et al. synthesized
acylnitroso intermediates by thermal retro-cleavage of their
Diels-Alder adducts with 9,10-dimethylanthracene or

cyclopentadiene in the presence of various olefins and have
demonstrated their propensity to undergo an ene reaction
[32a-c].

Alternatively, the in situ oxidation of nitrile oxides by
N -methylmorpholine N -oxide has led to intermediary
acylnitroso compounds, which afford ene products with
olefins in high yield [33a]. This procedure fails however
with less substituted ethylenes because of competing 1,3-
dipolar cycloaddition of nitrile oxide to the alkene. This
shortcoming can be avoided by using the photochemical
generation of nitrosocarbonyls by irradiation of oxadiazole
72, thence in the presence of differently substituted ethylenes
formed the crystalline ene products 73 in excellent yield
(Scheme 21) [33b].
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W. Adam et al. demonstrated that good yields of the
intermediary acylnitroso compound can be achieved under
mild conditions, as manifested by the ene reaction with the
appropriate olefins (Scheme 22) [34].

W. G. Kirby et al. have reported the first study of the
intramolecular ene reactions of nitrosoformate esters,
ROCONO, derived from allylic and homoallylic alcohols
(Scheme 23) [35].

C. Asymmetric Synthesis

Asymmetric synthesis of novel amino acids and peptides
from acylnitroso- derived cycloadduct was reported by M. J.

Miller et al. Optically pure oxazines derived from Diels-
Alder reaction of amino acid-based acylnitroso compounds
provides effective routes to novel highly functionalized
peptides in which the carbon framework of the new C-
terminal amino acid residue originates from the diene as
outlined in Scheme (24) [36].

Similar methodology was utilized in Baldwin’s racemic
synthesis of tabtoxin precursors 92. In that study, oxidation
of acylnitroso cycloadduct 91 was accomplished by using
permanganate and a phase transfer catalyst (tetrabutyl-
ammonium hydrogen phosphate) in water and benzene
(Scheme 25) [37].
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W. G. Kirby and M. Nazeer have reported cycloaddition
reactions of the chiral C-nitroso carbonyl compounds 94
with cyclopentadiene and cyclohexa-1,3-diene and the
highest ratio of diastereoisomers (ca. 5:1) has been observed
for the mandelic derivatives of cyclopentadiene 95a as
shown in Scheme (26) [38].

S. F. Martin et al. have developed a more general
approach to unsaturated, enantiomerically pure 1,4-amino
alcohols from alcohol 96 utilizing asymmetric Diels-Alder
reaction of chiral nitroso carbamates (Scheme 27) [39].

Table II shows [4+2] cycloaddition of chiral acylnitroso
compounds to variety of conjugated dienes where highly
diastereoselective products were formed.

A. Defoin et al. described three-step synthesis of the
amino lyxose derivatives 107 and 108, starting from the
readily accessible 1,2-dihydropyridine derivatives 102
(Scheme 28) [40].

Table 2. Diels-Alder Reaction of Chiral Acylnitroso
Dienophiles with Diene

Entry Diene 6 Major product 7
Diastereo-

meric excess
de(%)

Total
yield(%)

1

O

NXc OC
95 93

2

O

NXc OC 91 89

3 N

O

OCXc >96 94
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Another example of the synthesis of chiral compounds
with good diastereomeric excess (de) from chiral N -
butadienylpyroglutamate derivatives 109 has come from A.
Defoin et al.’s work (Scheme 29) [41].

L. Ghosez et al. showed that much higher level of
diastero-selectivities can be obtained with a
carbamoylnitroso compound 1 1 4  derived from a
disubstituted pyrrolidine 112 possessing C2 symmetry
(Scheme 30) [42].
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The absolute configuration of adduct 116 has been
determined by an X-ray diffraction analysis of the crystalline
reduced product 117 by reference to the known absolute
configuration of the asymmetric carbon atoms of the
pyrrolidine ring (Scheme 31).

IV. THE TOTAL SYNTHESIS OF NATURAL
PRODUCTS

The hetero Diels-Alder reactions and the ene reactions of
acylnitroso intermediates occupy the central step in the total
synthesis of natural products. Many examples are available
in the literature, among them only five excellent total
syntheses are described herein.

A. Total Synthesis of (±)-Lycoricidine

A concise synthesis of racemic lycoricidine 127, a
member of the narciclasine family of the Amaryllidaceae
alkaloid has been demonstrated starting from the
commercially available diol, cis-1,2-dihydrocatechol 118. It

requires a total of only eleven steps. The hetero-Diels-Alder
reaction of benzylnitoso carbamate with the diene 119 and
the Heck cyclization of the derived amide 124 served as the
key steps in this synthesis process (Scheme 32) [43].

B. Total Synthesis of dl-Cephalotaxine

A total synthesis of racemic cephalotaxine 147 was
developed starting from vinyl sulfone 128 utilizing triply
convergent vinyl sulfone methodology and stands as a first
example of an intramolecular [4+2] cycloaddition where the
dienophile has been delivered from the face opposite to the
tethering moiety (Scheme 33) [44].

C. Total Synthesis of (-)-Kainic acid

A concise route to (-)-kainic acid 159 from enantiopure
(+)-cis-4-carbobenzoxy amino-2-cyclopentanol 150 has been
devised by employing concurrent Chugaev syn-elimination
and intramolecular ene reaction as the key step (Scheme 34)
[45].
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D. Total Synthesis of (-)-Lepadine B

An enantioselective total synthesis of (-)-lepadine B 189
has been developed starting from (2S,4S)-2,4-O-benzylidene-
2,4-dihydroxybutanal 160. The key steps in this synthesis
include the use of an aqueous intramolecular acylnitroso
Diels-Alder reaction to afford the trans-1,2-oxazinolactam
and Suzuki cross-coupling reaction to elaborate the (E,E)-
octadienyl unit (Scheme 35) [46].

E. Total Synthesis of racemic BCX-1812(RWJ-270201)

A convergent and versatile racemic total synthesis of the
anti-influenza agent BCX-1812 202 was accomplished on
the basis of a sequence of stereo selective reactions. The size
of the core ring can be varied depending on the size of the
diene used for the preparation of the cycloadduct 191 using
an acylnitroso-based hetero-Diels-Alder reaction. Elaboration
of 191 to methyl ester 195 followed by a precedented [3+2]
dipolar cycloaddition gave bicyclic isooxazoline 198 in a
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region- and stereoselective fashion. Incorporation of the
peripheral guanidino group and subsequent deprotection
provided the target molecule 202 (Scheme 36) [47].

V. CONCLUSION

The chemistry of acylnitroso species are very interesting.
Scientists are utilizing these transient intermediates for the
designing of many molecules of natural products and many
complicated organic molecules and this trend is going on for
the new inventions. Hetero-Diels-Alder reactions as well as
ene reactions of acylnitroso intermediates occupy the central
position as an essential step in the chemical transformations.
Acylnitroso intermediates in hetero-Diels-Alder reactions
have been studied more extensively than any other of the
nitroso dienophiles. Examples of Lewis acid mediated
asymmetric catalysis lack completely in the area of hetero
Diels-Alder chemistry. Nevertheless, cycloadditions
involving acylnitroso dienophiles have reached an advanced
level concerning stereoselectivity and therefore, much
attention has been paid towards the preparation and
application of chiral, enantiopure dienophiles and dienes for
these reactions. Consequently, acylnitroso species stand as
the very reactive and useful intermediates in the total
synthesis of natural products.
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